Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent
نویسندگان
چکیده
Antimicrobial peptides (AMPs) are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa), a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma), with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy). Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry) allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10-8 M) than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these temporins exert leishmanicidal activity via a primary membranolytic mechanism but can also trigger apoptotis-like death. The many assets demonstrated for [K3]SHa make this small analog an attractive template to develop new antibacterial/antiparasitic drugs.
منابع مشابه
Biological Evaluation of Heterocycle Moiety of Some Novel azoles Derivatives as Antibacterial and Antifungal potential Agents
Background & Objective: Azole nucleuses are very important part of antimicrobial, analgesic and anti-inflammatory drugs. The azole class of compounds is the most popular among the antibacterial and antifungal classes because of its lower toxicity, higher efficacy and a broad spectrum of activity. Today, Efforts have focused on the development of new, less toxic and more efficacious antifungal a...
متن کاملELECTROCHEMICAL INVESTIGATION OF INHIBITORY OF NEW SYNTHESIZED TETRAZOLE DERIVATIVE ON CORROSION OF STAINLESS STEEL 316L IN ACIDIC MEDIUM
In this study, an organic compound inhibitor, namely N-benzyl-N-(4-chlorophenyl)-1H-tetrazole-5-amine (NBTA), was synthesized and the role of this inhibitor for corrosion protection of stainless steel (SS) exposed to 0.5 M H2SO4 was investigated using electrochemical, and quantum analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of NBTA was found t...
متن کاملEvaluation of antibacterial effect of silver nanoparticles against Escherichia coli isolates producing broad-spectrum beta-lactamases isolated from urinary tract infections
Introduction Considering the growth of antibiotic resistance and the study of new ways in Nanobiotechnology, this study examines the therapeutic effect of silver nanoparticles on E.coli bacteria to control and find new treatments against ESBL isolates of Escherichia coli. Materials and Methods For 100 samples of Escherichia coli, antibiotic resistance was determined by disc method for 3rd gen...
متن کاملRapid synthesis and characterization of Gold and Silver nanoparticles using exopolysaccharides and metabolites of Wesiella confusa as an antibacterial agent against Esherichia coli
Characterization and the antibacterial potential of gold (AuNPs) and silver nanoparticle (SNPs) biosynthesized greenly using exopolysaccharides (EPS) and Culture Free Supernatant (CFS) of Wesiella confusa against some multidrug resistance (MDR) E. coli was investigated. The biosynthesized nanoparticles were characterized by UV-visible spectra, Fourier Transfor...
متن کاملPrevalence of Extended-Spectrum Beta-Lactamases Enzymes in Enterobacter Aerogenes Isolated from Urinary Tract Infections in Shahrekord City
Introduction: Enterobacteriaceae produce the Extended-Spectrum Beta-Lactamases which is considered as an important resistant mechanism of beta-lactam antibiotics. The resistance to beta-lactam antibiotics is the main problem in the bacterial infections therapy. The prevalence of these enzymes changes in different geographical areas and with time. The present study aims to explore the frequency ...
متن کامل